Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The large-scale morphology of Milky Way (MW)–mass dark matter halos is shaped by two key processes: filamentary accretion from the cosmic web and interactions with massive satellites. Disentangling their contributions is essential for understanding galaxy evolution and constructing accurate mass models of the MW. We analyze the time-dependent structure of MW-mass halos from zoomed cosmological-hydrodynamical simulations by decomposing their mass distribution into spherical harmonic expansions. We find that the dipole and quadrupole moments dominate the gravitational power spectrum, encoding key information about the halo’s shape and its interaction with the cosmic environment. While the dipole reflects transient perturbations from infalling satellites and damps on dynamical timescales, the quadrupole—linked to the halo’s triaxiality—is a persistent feature. We show that the quadrupole’s orientation aligns with the largest filaments, imprinting a long-lived memory on the halo’s morphology even in its inner regions (∼30 kpc). At the virial radius, the quadrupole distortion can reach 1–2 times the spherical density, highlighting the importance of environment in shaping MW-mass halos. Using multichannel singular spectrum analysis, we successfully disentangle the effects of satellite mergers and filamentary accretion on quadrupole. We find that, compared to isolated MW–LMC simulations that typically use a spherical halo, the LMC-mass satellite induces a quadrupolar response that is an order of magnitude larger in our cosmological halo. This highlights the need for models that incorporate the MW’s asymmetry and time evolution, with direct consequences for observable structures such as disk warps, the LMC-induced wake, and stellar tracers—particularly in the era of precision astrometry.more » « lessFree, publicly-accessible full text available July 24, 2026
-
Abstract We present a multi-epoch spectroscopic study of LkCa 4, a heavily spotted non-accreting T Tauri star. Using SpeX at NASA’s Infrared Telescope Facility (IRTF), 12 spectra were collected over five consecutive nights, spanning ≈1.5 stellar rotations. Using the IRTF SpeX Spectral Library, we constructed empirical composite models of spotted stars by combining a warmer (photosphere) standard star spectrum with a cooler (spot) standard weighted by the spot filling factor,fspot. The best-fit models spanned two photospheric component temperatures,Tphot= 4100 K (K7V) and 4400 K (K5V), and one spot component temperature,Tspot= 3060 K (M5V) with anAVof 0.3. We find values offspotto vary between 0.77 and 0.94 with an average uncertainty of ∼0.04. The variability offspotis periodic and correlates with its 3.374 day rotational period. Using a mean value forfmeanspotto represent the total spot coverage, we calculated spot corrected values forTeffandL⋆. Placing these values alongside evolutionary models developed for heavily spotted young stars, we infer mass and age ranges of 0.45–0.6M⊙and 0.50–1.25 Myr, respectively. These inferred values represent a twofold increase in the mass and a twofold decrease in the age as compared to standard evolutionary models. Such a result highlights the need for constraining the contributions of cool and warm regions of young stellar atmospheres when estimatingTeffandL⋆to infer masses and ages as well as the necessity for models to account for the effects of these regions on the early evolution of low-mass stars.more » « less
-
ABSTRACT We present a novel method for constraining the length of the Galactic bar using 6D phase-space information to directly integrate orbits. We define a pseudo-length for the Galactic bar, named RFreq, based on the maximal extent of trapped bar orbits. We find the RFreq measured from orbits is consistent with the RFreq of the assumed potential only when the length of the bar and pattern speed of said potential is similar to the model from which the initial phase-space coordinates of the orbits are derived. Therefore, one can measure the model’s or the Milky Way’s bar length from 6D phase-space coordinates by determining which assumed potential leads to a self-consistent measured RFreq. When we apply this method to ≈210 000 stars in APOGEE DR17 and Gaia eDR3 data, we find a consistent result only for potential models with a dynamical bar length of ≈3.5 kpc. We find the Milky Way’s trapped bar orbits extend out to only ≈3.5 kpc, but there is also an overdensity of stars at the end of the bar out to 4.8 kpc which could be related to an attached spiral arm. We also find that the measured orbital structure of the bar is strongly dependent on the properties of the assumed potential.more » « less
-
Abstract The total mass of the Local Group (LG) is a fundamental quantity that enables interpreting the orbits of its constituent galaxies and placing the LG in a cosmological context. One of the few methods that allows inferring the total mass directly is the “Timing Argument,” which models the relative orbit of the Milky Way (MW) and M31 in equilibrium. The MW itself is not in equilibrium, a byproduct of its merger history and including the recent pericentric passage of the Large Magellanic Cloud (LMC), and recent work has found that the MW disk is moving with a lower bound “travel velocity” of ∼32 km s−1with respect to the outer stellar halo. Previous Timing Argument measurements have attempted to account for this nonequilibrium state, but have been restricted to theoretical predictions for the impact of the LMC specifically. In this paper, we quantify the impact of a travel velocity on recovered LG mass estimates using several different compilations of recent kinematic measurements of M31. We find that incorporating the measured value of the travel velocity lowers the inferred LG mass by 10%–12% compared to a static MW halo. Measurements of the travel velocity with more distant tracers could yield even larger values, which would further decrease the inferred LG mass. Therefore, the newly measured travel velocity directly implies a lower LG mass than from a model with a static MW halo and must be considered in future dynamical studies of the Local Volume.more » « less
An official website of the United States government
